
www.manaraa.com

Designing E�etive Algorithm VisualizationsSami Khuri�Department of Mathematis and Computer SieneSan Jos�e State UniversitySan Jos�e, CA 95192, USAE-mail: khuri�s.sjsu.eduWWW: http://www.maths.sjsu.edu/faulty/khuriAbstratAdvanes in omputing tehnology and the a�ordability of soft-ware and high-performane graphis hardware enabled rapid growthof visual tools. Today, not only very expensive workstations, but alsolow-ost PCs are apable of running omputationally demanding vi-sualization systems. Algorithm visualizations or the graphi depitionof algorithms in exeution have been used in explaining, designingand analyzing algorithms sine the early 1980s. Although many toolshave been developed over the past twenty years, not enough attentionhas been paid to the analysis of users, their needs, tasks, and goals.This paper provides an overview of algorithm visualization tehniques,based on the premise that a rethinking of algorithm animation designis required in order to harness its power for enhaning learning. Moreinformation about the topi an be found on the author's web page.1 IntrodutionThis paper provides an overview of algorithm visualization tehniques, basedon the premise that a rethinking of algorithm animation design is required inorder to harness its power to enhane learning. Sine the early 1980s, manyvisualization systems have been reated. They range from animations of onealgorithm or a group of related algorithms, suh as MLFQ, PAGE (Khuri& Hsu, 1999), RLE, Quadtree, and JPEG (Khuri & Hsu, 2000), to powerfuldistributed and ollaborative algorithm animation systems, suh as Fuse-N�Part of this work was done while the author was on sabbatial leave at the Universityof M�alaga, 29071 M�alaga, Spain.



www.manaraa.com

by MIT Computer Graphis Group (Teller, Boyd, Porter, & Tornow, 1998)and JCAT (Brown, Najork, & Raisamo, 1997). Algorithm visualizationsan be used to attrat students' attention during leture, explain oneptsin visual terms, automate examples and demos and enourage a pratiallearning proess. They failitate better ommuniation among the studentsand the instrutors. The instrutional proess in traditional lasses is oftenone-diretional. Instrutors use the whiteboard or slides to present the ma-terial. The interation between them and the students is limited to verbaldisussions. Very rarely do students have the opportunity to experimentin lass and explore a onept in other dimensions. Interative algorithmvisualizations provide new opportunities for instrution. The instrutionapproah an now be viewed as a ombined learning proess. Students donot just sit in the lassroom and listen. They use their left and right brain tovisualize things happening while they are proessing their mental thoughts.They an learn by doing and do not have to worry about making mistakes.This paper fouses on important steps of the algorithm visualizationdesign and tehniques of e�etive eduational illustrations of algorithms.The rest of the paper is organized as follows. Setion 2 disusses some im-portant issues often overlooked by the developers of algorithm visualization.Setion 3 presents an overview of tehniques that an make visualizationsmore e�etive. Setion 4 onludes the paper with some reommendationsfor designers of new visualizations.2 Design IssuesLike many other design disiplines, a suessful algorithm visualization de-sign should onsider e�etive representation and presentation of information,suh as layout, olor, graphis, and user interfae. Designers of interativealgorithm visualizations must be able to blend a thorough knowledge oftehnial feasibility with a mystial aestheti sense of what attrats users.Some issues that sometimes have been overlooked by the designers ofalgorithm visualizations inlude the analysis of the users, their needs, theirtasks, the sope of the pakage, and the resoures available to developers.The analysis should be done as a preliminary step of the design proess.What follows are examples of how it an inuene the resulting algorithmvisualization.� Although some systems are intended for a wide audiene, no algorithmvisualization will ever be universally superior aross all kinds of users.



www.manaraa.com

Understanding who the users are should determine the ontent, or-ganization, breadth, depth, aess and presentation methods of thevisualization system being designed.For example, novie users need help in mapping real world modelsonto a program. For this type of users, visualization should inlude anumber of worked examples showing how the algorithm an be usedand how the algorithm output is related to its input, Help �les shouldbe available to desribe how the algorithm works, as well as how theinterfae is organized. Short quizzes should be provided for studentsto make sure they have understood the material, and to exerise theuse of the visualization tools.On the other hand, experiened users will want a system that willallow them to move easily between the ode and the visualization, orto integrate their own programs into the system. The methods foralling visualization routines should be eÆient and well doumented.� When designing an algorithm visualization system, it is important tonote the system's intended goals and selet the ontent aordingly.An assessment should be made to see if presenting an algorithm byvisualizing it is the most e�etive way. For example, using a telephonebook to explain the binary searh algorithm is probably more eÆientthan implementing an algorithm visualization.� Algorithm visualization systems have been used to onstrut visual-izations for leture demonstrations (Brown, 1988), as the basis forinterative labs (Naps, 1990), or as visualization assignments in whihstudents onstrut their own visualizations of the algorithms understudy (Stasko, 1997). In more reent work, Hundhausen proposes touse software visualization in one of the following situations: letures,assignments, laboratories, study, oÆe hours, and tests (Hundhausen,1999). Obviously, eah situation demands a di�erent kind of anima-tion system, and it is diÆult to build the system that satis�es all ofthem.For example, if the tools are developed primarily for lassroom demon-stration with an instrutor desribing the senario, they do not needa lot of written explanations. As a visualization proeeds, the expla-nation of what is happening should be left for the instrutor and notexpliitly desribed in the demonstration. If, however, the tools willbe used for self-direted study, they will need a lot of explanatory uesin the form of short textual notes.



www.manaraa.com

Figure 1: Compressing bitmaps using the RLE pakage.� One of the most diÆult parts of the analysis step is to deide whihinformation should the visualization onvey and how to present it.Existing systems have attempted to visualize data strutures, programows, pseudoode and the algorithm in ation.Designers should develop an appropriate set of onventions to denotedi�erent information, so that the users do not waste their time try-ing to �gure out what the piture means. The information should bearefully abstrated. Di�erent levels of abstration require di�erentrepresentation methods (Cox & Roman, 1992). Diret representationsdiretly map information to the display, e.g. the bitmap in Figure1 an be easily reonstruted from the piture in the left panel. Instrutural representations, some details of information are onealedand the remaining information is diretly represented. For example,proportionally-sized olor bloks may indiate memory alloation andusage without attempting to present the state of memory. Synthe-sized representations, suh as \Compression Output" in Figure 1, anbe derived from the program data, but is not diretly represented in



www.manaraa.com

the program. The extra data strutures are reated and their ontentsare periodially examined and updated in the display. This type, aswell as explanatory representations are added in order to improve un-derstandability of the display and fous the attention of the viewers.Information about the algorithm an be represented through shape,size, olor, texture, sound, and arrangement of objets. Di�erent, butrelated algorithms an be animated using the same representation ordi�erent representations for eah algorithm. Using the same represen-tation is produtive sine one the animation view has been establishedfor the �rst algorithm, the view an then be reused. This approahalso eases the omparison of the behavior of related algorithms as in\Sorting Out Sorting" (Baeker, 1998).� The designer also has to set the boundaries for the visualization. Mostmodern algorithm visualizations allow the user to enter their own datasets. If the input �le ontains a lot of data, the visualization will be-ome very omplex and diÆult to see. The users will have to srolland may lose the sense of the \whole" piture. The animation mightonfuse more than eduate. In suh ases, visualization should on-dense ompliated parts of the sene into smaller items. Algorithm'sexeution an also be ondensed, e.g. several phases of an algorithman be omitted and only the �nal result of those steps is presented.3 Some Tehniques for Creating VisualizationsIn this setion, we examine tehniques for visual representation of informa-tion about programs. We fous on approahes that are either fundamentalor have been tried and appear to enhane visual ommuniation. Althoughresearh on algorithm visualization dates bak to 1980s, no de�nitive lexionof these tehniques exists. In addition, new tehniques ontinually evolve.We thus try to give a reasonably omplete overage of the area, bearing inmind, that it annot be omprehensive.3.1 Display LayoutThe sreen on whih the visualization ours an easily get luttered withthe many visual representations of ontrol onstruts or data items. If theseare redued in size to allow yet more representations to be displayed thenthe animations are too small to be seen learly. One way to redue visualluttering is to divide eah animation display into funtional areas, eah



www.manaraa.com

ontaining a di�erent type of information. It is advisable to plae impor-tant information near the top and to the left (eye-motion studies show thatour gaze goes to the upper-left of a retangular display and then moveslokwise). Eah type of information should be onsistently displayed in itsassigned area. If neessary, areas an be enlarged or minimized to handlespeial ases, always keeping the primary viewing area as large as possible.It is often useful to provide multiple views of the same system in order tounderstand a variety of harateristis of the data. Multiple views might in-lude simultaneous oarse-grained and �ne-grained views of data strutures,or a graphial view of the hanging program data with a orresponding viewof the exeuting soure ode (Brown, 1988). One of the advantages of multi-ple views is their ability to avoid foring the viewer to remember algorithmstates no longer on display. For example, two onseutive frames are shownin the \omi strip" approah (Biermann & Cole, 1999). These frames dis-play the state of the system both immediately before and after an ation. Auseful extension of the multiple views idea is the use of segmentation, wherea seletion of some subset of the nodes in one view is reeted in all views.In this ase, one ould selet a physial region in one of the views, and thedisplay would immediately highlight the orresponding values in the otherviews (Khuri & Hsu, 2000).Some researhers ritiize the multiple views approah. They argue thatmultiple views lead to onfusion about what is being explained. They believethat a single window should be used to display the animation with the ex-planatory text, thus preventing problems arising from too muh informationbeing displayed on the limited resolution devie.3.2 Using ColorColor has traditionally been used to enhane blak-and-white information.With respet to learning and omprehension, olor is superior to blak-and-white in terms of proessing time and the viewer's emotional reations.But researh has shown that there is no di�erene in the viewer's ability tointerpret information: people do not learn more from a olor display, thoughthey may say they do. The ruial fator is that olor is more enjoyable andeasier to remember.Establishing general rules or spei�ations for olor use is diÆult. Westill lak some important understanding of olor vision. Some general guide-lines have appeared in omputer graphis magazines. What follows is a shortsummary of these guidelines.1. With respet to olor, it is best to be onservative. Use a maximum



www.manaraa.com

of �ve, plus or minus two, olors. For novie viewers, four distintolors are appropriate. This allows extra room in short-term memory(lasting about 20 seonds), whih an store �ve words or shapes, sixletters, seven olors and eight digits.2. Use foveal (enter) and peripheral olors appropriately. For example,use blue for large areas, suh as bakgrounds and not for text, thinlines or small shapes. Blue-sensitive ones are the least numerous olorreeptors in the retina, and the eye's entral fousing area, the fovea,ontains a relatively small number of these ones.Use red and green in the enter of the visual �eld, not in the periphery.The edges of the retina are not partiularly sensitive to these olors. Ifthey are used at the periphery, some signal to the viewer must be givento apture the user's attention - for example, size hange, blinking, et.3. Do not use high-hroma, spetrally extreme olors simultaneously.Strong ontrasts of red/green, blue/yellow, green/blue and red/bluereate vibrations, illusions of shadows and afterimages.4. Use familiar, onsistent olor odings with appropriate referenes.Some ommon Western denotations are:� Red refers to stop, danger, hot, �re.� Yellow refers to aution, slow, test.� Green refers to go, O.K., lear.5. Be onsistent in using the same olor for grouping related elements.Do not use a partiular olor for elements not related to the others,suh as data struture and ontrol buttons. Similar bakground olorsof related areas an orient the viewer to understand the oneptuallinking of the two areas, without the need of more expliit verbal ues.6. Use high value, high saturation olors to draw attention. The use ofbright olors for danger signals, reminders, et., is appropriate. Highhroma red or blue alerts seem to eliit faster responses than doesyellow or yellow-orange.7. Use olor to save sreen area. For example, using a small area hangingin olor to denote a progress, rather than a bar or line, an greatlyeonomize spae.



www.manaraa.com

3.3 Using SoundSound is a useful omplement to the visual output beause it an inrease (orredue) the amount of information ommuniated to the user. It makes useof the auditory system whih is powerful but underutilized in most urrentinterfaes. So far, audio has been used to improve the programmer's aware-ness of the behavior of parallel programs by generating sounds based on traedata reorded during exeution (Jakson & Franioni, 1992). While animat-ing algorithms, Brown and Hershberger generated sounds orresponding inpith to elements being inserted into a hash table, items being sorted, andto the number of ative threads (Brown & Hershberger, 1992). The follow-ing are some reommendations for using sound in algorithm visualizationsystems.� Users have their own distint preferenes for non-speeh sounds whilethey are learning and using the system, so a highly-exible user-on�guration omponent should be inluded for the users to speify:{ the exat sound for eah event/ommand,{ whether eah spei� sound is on/o�,{ whether all the sounds are on/o�.This on�guration should be easily aessible.� The use of any non-speeh sound is likely to require some trainingand pratie. A mixture of doumentation and on-line training withexamples ould be used to give users the orret interpretation forthe sounds in a system. This will help to ensure that users have theintended model for the sounds.� Carefully onsider the number of sounds. Use only a few sounds for themost important or diÆult events/ommands. Don't reate a systemfull of non-speeh sounds, whih might beome irritating. In addition,there is a threshold for learning and remembering sounds (from 7 to 9di�erent sounds).3.4 Seleting Input DataThe omplexity of a visual presentation is generally proportional to theamount of information being onveyed. Therefore, it is better to launha presentation with a relatively small problem instane and provide largerones for the users who begin to understand the meaning assoiated with



www.manaraa.com

the visual patterns unfolding on the sreen. The RLE pakage (see Fig-ure 1) an visualize algorithms for input �les of size 4x4, 8x8, 16x16, and32x32. Input �les larger than that will be diÆult to see on the sreen,and thus, not bene�ial to the students learning the algorithms. For peda-gogial purposes, pathologial ases should also be provided (e.g. all-whiteand all-blak bitmaps for run length enoding algorithms). Graphial in-put tools are beoming a must, espeially if visualization is intended forfree exploration by the students. When designing input tools, possible er-roneous situations should be onsidered. For the pakage in Figure 1, theerroneous input would be a text or an exeutable �le for example. Largeamounts of data are needed to ompare the performane of di�erent algo-rithms. Another useful tehnique for omparing algorithms is to have themrun side-by-side. BALSA animations of sorting algorithms e�etively usethis tehnique (Brown, 1988).3.5 Providing InterativityProbably the most important issue in designing algorithm visualizations isthat of user interation. Interation is what distinguishes algorithm vi-sualization systems from the simple movie demonstration of algorithms.The degree, methods, and forms of interativity will depend on the tasksusers want to aomplish. If the system will be used for exploratory pur-poses, like Brown's University Exploratories Projet (Simpson, Spalter, &Dam, 1999), users' interation will be dynami, frequent, and sometimesunpreditable. Algorithm visualizations should enourage user's searh forstrutures, trends, or testing a hypotheses through interation. Studentsmight also want to hek their understanding of the material through self-assessment exerises. The system an periodially pose questions to thestudent. The simplest form is a tikler whih is a question that pops up inrandom order but always in the appropriate ontext. Tikler questions fousthe student's attention on spei� issues and promote self-explanation as ameans to improve omprehension. With tikler questions, neither the an-swers to the questions nor any sort of feedbak is provided. Other questionsthat require student input an be plaed at artiulation points beyond whihthe learner annot proeed until the question is answered orretly. Anothertehnique is to speify a desired result and to have the users �nd ways oftinkering with the parameters of an algorithm to ahieve the required result.If on the other side, the algorithm animation system will be used toon�rm or refute a hypothesis, or explain a onept, users' interation withthe system might be more stable and preditable and some of the parameters



www.manaraa.com

an be predetermined.Whih interation mehanism is hosen for ommuniation with the sys-tem depends on the users, their needs and tasks, but they should be as simpleas possible so as not to overwhelm the user. For example, it is importantto provide a graph editor/drawing utility if a novie will be speifying inputdata for a graph algorithm.Interative algorithm visualization systems should be forgiving to theuser. In a highly-interative system, there is always a situation when theuser will press the wrong button, input invalid data, or manipulate the wronggraphi objet. The vast majority of user errors our beause the developerof a system allows the error to our. Most error messages therefore, an beeliminated by reduing the possibility of errors, by making sure that number�elds only aept numbers, by providing lists wherever possible, by providing�le seletion dialogs rather than asking users to type �lenames, and byproviding default values. Default values let the user know the expeted formof the input and onsequently will speed up the input proess. Preventionof errors requires that the designers antiipate the potential mistakes theuser is likely to make. This is often the most diÆult aspet of designing ane�etive user interfae, sine the designer's familiarity and knowledge of theprogram interferes with his or her ability to view the program as a noviemight. Another way of dealing with erroneous input is to allow for easyreversal of ations. The Undo or Redo utilities relieve users' anxiety andenourage free exploration.The interatability of the system is dependent on its response time anddisplay rate. Time fator is important, beause, on one hand, long responsetimes (15 seonds and more) an result in user's frustration, annoyane oreven anger. On the other hand, if the response is too quik (less than 1seond) it an result in the users learning less, reading with lower ompre-hension, and making more errors.4 Conluding RemarksThis paper presented an overview of the important design issues and teh-niques for algorithm visualizations. The �eld of algorithm visualization israpidly evolving. There are many systems available over the Internet andmany are still under development. This paper is an attempt to bring to theattention of the visualization designers the importane of the preliminarystep: the analysis of the users, their needs, and tasks, and its impliations.We onlude this work by giving some reommendations derived from our



www.manaraa.com

experiene in designing and using algorithm visualizations.� Don't attempt to provide everything possible in the beginning. Pro-vide what you an that is of real bene�t to the user and is of highquality. Plan to inrementally add new features over time rather thanimplement everything at one.� Keep in mind when designing new algorithm visualization that usersare not interested in pretty pitures. They need something that willlead them to onstrut an empirial model of behavior. They shouldbe able to relate the display of information to a ontext and onnetthe display to the environment from whih it is derived.� Make sure to prevent the animation from beoming too busy and toodistrating, either spatially (too muh is going on in parallel) or tem-poral (too muh is hanging too quikly). First, perform informationanalysis and then design the layout.� Don't get arried away. Today's omputer software provide many gad-gets for designers to experiment with. It is so easy to pull down menusand selet di�erent typefaes, and assign vivid olors. People tend touse too many olors or simply hoose the wrong olor that degrades thepresentation. A graphi overloaded design is onfusing to users. Goodgraphi design will onvey the intended message without distrationsof any kind.� To minimize students' startup learning time, provide standard GUIto manipulate the tools. Menus should appear in the same plae,interations should be onsistent, and sreen layouts should be similar.After several demonstrations of di�erent tools, the students will befamiliar with the interfae and sreen layout, and an onentrate onwhat is hanging in the visualization.� Provide tailor-made help �les, direted to your users.ReferenesBaeker, R. (1998). Sorting out sorting: A ase study of software visualiza-tion for teahing omputer siene. Software Visualization: Program-ming as a Multimedia Experiene, 369{382.



www.manaraa.com

Biermann, H., & Cole, R. (1999). Comi strips for algorithm visualization[NYU Tehnial Report 1999-778℄.Brown, M. (1988). Algorithm animation. Cambridge, MA: MIT Press.Brown, M., & Hershberger, J. (1992). Color and sound in algorithm anima-tion. Computer, 25 (12), 52{63.Brown, M., Najork, M., & Raisamo, R. (1997). A java-based implementationof ollaborative ative textbooks. 1997 IEEE Symposium on VisualLanguages, 372{379.Cox, K., & Roman, G. (1992). Abstration in algorithm animation (WUCS-92-14 Report). Shool of Engineering and Applied Siene, WashingtonUniversity in St. Louis.Hundhausen, C. (1999). Toward e�etive algorithm visualization artifats:Designing for ourse. Dotoral dissertation, University of Oregon.Jakson, J., & Franioni, J. (1992). Aural signatures of parallel programs.Proeedings of the 25th Hawaii Conferene on System Sienes, 218{229.Khuri, S., & Hsu, H. (1999). Visualizing the pu sheduler and page re-plaement algorithms. Proeedings of the SIGCSE'99, 227{231.Khuri, S., & Hsu, H. (2000). Interative pakages for learning image om-pression algorithms. Proeedings of the 5th ITiCSE, 73{76.Naps, T. (1990). Algorithm visualization in omputer siene laboratories.Proeedings of the SIGCSE'90, 105{110.Simpson, R., Spalter, A., & Dam, A. (1999). Exploratories: An edua-tional strategy for the 21st entury. Proeedings of the onferene onSIGGRAPH 99: onferene abstrats and appliations, 43{45.Stasko, J. (1997). Using student-built algorithm animations as learningaids. Proeedings of the SIGCSE'97, 25{29.Teller, S., Boyd, N., Porter, B., & Tornow, N. (1998). Distributed de-velopment and teahing of algorithmi onepts. Proeedings of SIG-GRAPH'98, 94{101.


