
www.manaraa.com

Designing E�e
tive Algorithm VisualizationsSami Khuri�Department of Mathemati
s and Computer S
ien
eSan Jos�e State UniversitySan Jos�e, CA 95192, USAE-mail: khuri�
s.sjsu.eduWWW: http://www.math
s.sjsu.edu/fa
ulty/khuriAbstra
tAdvan
es in 
omputing te
hnology and the a�ordability of soft-ware and high-performan
e graphi
s hardware enabled rapid growthof visual tools. Today, not only very expensive workstations, but alsolow-
ost PCs are 
apable of running 
omputationally demanding vi-sualization systems. Algorithm visualizations or the graphi
 depi
tionof algorithms in exe
ution have been used in explaining, designingand analyzing algorithms sin
e the early 1980s. Although many toolshave been developed over the past twenty years, not enough attentionhas been paid to the analysis of users, their needs, tasks, and goals.This paper provides an overview of algorithm visualization te
hniques,based on the premise that a rethinking of algorithm animation designis required in order to harness its power for enhan
ing learning. Moreinformation about the topi
 
an be found on the author's web page.1 Introdu
tionThis paper provides an overview of algorithm visualization te
hniques, basedon the premise that a rethinking of algorithm animation design is required inorder to harness its power to enhan
e learning. Sin
e the early 1980s, manyvisualization systems have been 
reated. They range from animations of onealgorithm or a group of related algorithms, su
h as MLFQ, PAGE (Khuri& Hsu, 1999), RLE, Quadtree, and JPEG (Khuri & Hsu, 2000), to powerfuldistributed and 
ollaborative algorithm animation systems, su
h as Fuse-N�Part of this work was done while the author was on sabbati
al leave at the Universityof M�alaga, 29071 M�alaga, Spain.



www.manaraa.com

by MIT Computer Graphi
s Group (Teller, Boyd, Porter, & Tornow, 1998)and JCAT (Brown, Najork, & Raisamo, 1997). Algorithm visualizations
an be used to attra
t students' attention during le
ture, explain 
on
eptsin visual terms, automate examples and demos and en
ourage a pra
ti
allearning pro
ess. They fa
ilitate better 
ommuni
ation among the studentsand the instru
tors. The instru
tional pro
ess in traditional 
lasses is oftenone-dire
tional. Instru
tors use the whiteboard or slides to present the ma-terial. The intera
tion between them and the students is limited to verbaldis
ussions. Very rarely do students have the opportunity to experimentin 
lass and explore a 
on
ept in other dimensions. Intera
tive algorithmvisualizations provide new opportunities for instru
tion. The instru
tionapproa
h 
an now be viewed as a 
ombined learning pro
ess. Students donot just sit in the 
lassroom and listen. They use their left and right brain tovisualize things happening while they are pro
essing their mental thoughts.They 
an learn by doing and do not have to worry about making mistakes.This paper fo
uses on important steps of the algorithm visualizationdesign and te
hniques of e�e
tive edu
ational illustrations of algorithms.The rest of the paper is organized as follows. Se
tion 2 dis
usses some im-portant issues often overlooked by the developers of algorithm visualization.Se
tion 3 presents an overview of te
hniques that 
an make visualizationsmore e�e
tive. Se
tion 4 
on
ludes the paper with some re
ommendationsfor designers of new visualizations.2 Design IssuesLike many other design dis
iplines, a su

essful algorithm visualization de-sign should 
onsider e�e
tive representation and presentation of information,su
h as layout, 
olor, graphi
s, and user interfa
e. Designers of intera
tivealgorithm visualizations must be able to blend a thorough knowledge ofte
hni
al feasibility with a mysti
al aestheti
 sense of what attra
ts users.Some issues that sometimes have been overlooked by the designers ofalgorithm visualizations in
lude the analysis of the users, their needs, theirtasks, the s
ope of the pa
kage, and the resour
es available to developers.The analysis should be done as a preliminary step of the design pro
ess.What follows are examples of how it 
an in
uen
e the resulting algorithmvisualization.� Although some systems are intended for a wide audien
e, no algorithmvisualization will ever be universally superior a
ross all kinds of users.



www.manaraa.com

Understanding who the users are should determine the 
ontent, or-ganization, breadth, depth, a

ess and presentation methods of thevisualization system being designed.For example, novi
e users need help in mapping real world modelsonto a program. For this type of users, visualization should in
lude anumber of worked examples showing how the algorithm 
an be usedand how the algorithm output is related to its input, Help �les shouldbe available to des
ribe how the algorithm works, as well as how theinterfa
e is organized. Short quizzes should be provided for studentsto make sure they have understood the material, and to exer
ise theuse of the visualization tools.On the other hand, experien
ed users will want a system that willallow them to move easily between the 
ode and the visualization, orto integrate their own programs into the system. The methods for
alling visualization routines should be eÆ
ient and well do
umented.� When designing an algorithm visualization system, it is important tonote the system's intended goals and sele
t the 
ontent a

ordingly.An assessment should be made to see if presenting an algorithm byvisualizing it is the most e�e
tive way. For example, using a telephonebook to explain the binary sear
h algorithm is probably more eÆ
ientthan implementing an algorithm visualization.� Algorithm visualization systems have been used to 
onstru
t visual-izations for le
ture demonstrations (Brown, 1988), as the basis forintera
tive labs (Naps, 1990), or as visualization assignments in whi
hstudents 
onstru
t their own visualizations of the algorithms understudy (Stasko, 1997). In more re
ent work, Hundhausen proposes touse software visualization in one of the following situations: le
tures,assignments, laboratories, study, oÆ
e hours, and tests (Hundhausen,1999). Obviously, ea
h situation demands a di�erent kind of anima-tion system, and it is diÆ
ult to build the system that satis�es all ofthem.For example, if the tools are developed primarily for 
lassroom demon-stration with an instru
tor des
ribing the s
enario, they do not needa lot of written explanations. As a visualization pro
eeds, the expla-nation of what is happening should be left for the instru
tor and notexpli
itly des
ribed in the demonstration. If, however, the tools willbe used for self-dire
ted study, they will need a lot of explanatory 
uesin the form of short textual notes.



www.manaraa.com

Figure 1: Compressing bitmaps using the RLE pa
kage.� One of the most diÆ
ult parts of the analysis step is to de
ide whi
hinformation should the visualization 
onvey and how to present it.Existing systems have attempted to visualize data stru
tures, program
ows, pseudo
ode and the algorithm in a
tion.Designers should develop an appropriate set of 
onventions to denotedi�erent information, so that the users do not waste their time try-ing to �gure out what the pi
ture means. The information should be
arefully abstra
ted. Di�erent levels of abstra
tion require di�erentrepresentation methods (Cox & Roman, 1992). Dire
t representationsdire
tly map information to the display, e.g. the bitmap in Figure1 
an be easily re
onstru
ted from the pi
ture in the left panel. Instru
tural representations, some details of information are 
on
ealedand the remaining information is dire
tly represented. For example,proportionally-sized 
olor blo
ks may indi
ate memory allo
ation andusage without attempting to present the state of memory. Synthe-sized representations, su
h as \Compression Output" in Figure 1, 
anbe derived from the program data, but is not dire
tly represented in



www.manaraa.com

the program. The extra data stru
tures are 
reated and their 
ontentsare periodi
ally examined and updated in the display. This type, aswell as explanatory representations are added in order to improve un-derstandability of the display and fo
us the attention of the viewers.Information about the algorithm 
an be represented through shape,size, 
olor, texture, sound, and arrangement of obje
ts. Di�erent, butrelated algorithms 
an be animated using the same representation ordi�erent representations for ea
h algorithm. Using the same represen-tation is produ
tive sin
e on
e the animation view has been establishedfor the �rst algorithm, the view 
an then be reused. This approa
halso eases the 
omparison of the behavior of related algorithms as in\Sorting Out Sorting" (Bae
ker, 1998).� The designer also has to set the boundaries for the visualization. Mostmodern algorithm visualizations allow the user to enter their own datasets. If the input �le 
ontains a lot of data, the visualization will be-
ome very 
omplex and diÆ
ult to see. The users will have to s
rolland may lose the sense of the \whole" pi
ture. The animation might
onfuse more than edu
ate. In su
h 
ases, visualization should 
on-dense 
ompli
ated parts of the s
ene into smaller items. Algorithm'sexe
ution 
an also be 
ondensed, e.g. several phases of an algorithm
an be omitted and only the �nal result of those steps is presented.3 Some Te
hniques for Creating VisualizationsIn this se
tion, we examine te
hniques for visual representation of informa-tion about programs. We fo
us on approa
hes that are either fundamentalor have been tried and appear to enhan
e visual 
ommuni
ation. Althoughresear
h on algorithm visualization dates ba
k to 1980s, no de�nitive lexi
onof these te
hniques exists. In addition, new te
hniques 
ontinually evolve.We thus try to give a reasonably 
omplete 
overage of the area, bearing inmind, that it 
annot be 
omprehensive.3.1 Display LayoutThe s
reen on whi
h the visualization o

urs 
an easily get 
luttered withthe many visual representations of 
ontrol 
onstru
ts or data items. If theseare redu
ed in size to allow yet more representations to be displayed thenthe animations are too small to be seen 
learly. One way to redu
e visual
luttering is to divide ea
h animation display into fun
tional areas, ea
h



www.manaraa.com


ontaining a di�erent type of information. It is advisable to pla
e impor-tant information near the top and to the left (eye-motion studies show thatour gaze goes to the upper-left of a re
tangular display and then moves
lo
kwise). Ea
h type of information should be 
onsistently displayed in itsassigned area. If ne
essary, areas 
an be enlarged or minimized to handlespe
ial 
ases, always keeping the primary viewing area as large as possible.It is often useful to provide multiple views of the same system in order tounderstand a variety of 
hara
teristi
s of the data. Multiple views might in-
lude simultaneous 
oarse-grained and �ne-grained views of data stru
tures,or a graphi
al view of the 
hanging program data with a 
orresponding viewof the exe
uting sour
e 
ode (Brown, 1988). One of the advantages of multi-ple views is their ability to avoid for
ing the viewer to remember algorithmstates no longer on display. For example, two 
onse
utive frames are shownin the \
omi
 strip" approa
h (Biermann & Cole, 1999). These frames dis-play the state of the system both immediately before and after an a
tion. Auseful extension of the multiple views idea is the use of segmentation, wherea sele
tion of some subset of the nodes in one view is re
e
ted in all views.In this 
ase, one 
ould sele
t a physi
al region in one of the views, and thedisplay would immediately highlight the 
orresponding values in the otherviews (Khuri & Hsu, 2000).Some resear
hers 
riti
ize the multiple views approa
h. They argue thatmultiple views lead to 
onfusion about what is being explained. They believethat a single window should be used to display the animation with the ex-planatory text, thus preventing problems arising from too mu
h informationbeing displayed on the limited resolution devi
e.3.2 Using ColorColor has traditionally been used to enhan
e bla
k-and-white information.With respe
t to learning and 
omprehension, 
olor is superior to bla
k-and-white in terms of pro
essing time and the viewer's emotional rea
tions.But resear
h has shown that there is no di�eren
e in the viewer's ability tointerpret information: people do not learn more from a 
olor display, thoughthey may say they do. The 
ru
ial fa
tor is that 
olor is more enjoyable andeasier to remember.Establishing general rules or spe
i�
ations for 
olor use is diÆ
ult. Westill la
k some important understanding of 
olor vision. Some general guide-lines have appeared in 
omputer graphi
s magazines. What follows is a shortsummary of these guidelines.1. With respe
t to 
olor, it is best to be 
onservative. Use a maximum



www.manaraa.com

of �ve, plus or minus two, 
olors. For novi
e viewers, four distin
t
olors are appropriate. This allows extra room in short-term memory(lasting about 20 se
onds), whi
h 
an store �ve words or shapes, sixletters, seven 
olors and eight digits.2. Use foveal (
enter) and peripheral 
olors appropriately. For example,use blue for large areas, su
h as ba
kgrounds and not for text, thinlines or small shapes. Blue-sensitive 
ones are the least numerous 
olorre
eptors in the retina, and the eye's 
entral fo
using area, the fovea,
ontains a relatively small number of these 
ones.Use red and green in the 
enter of the visual �eld, not in the periphery.The edges of the retina are not parti
ularly sensitive to these 
olors. Ifthey are used at the periphery, some signal to the viewer must be givento 
apture the user's attention - for example, size 
hange, blinking, et
.3. Do not use high-
hroma, spe
trally extreme 
olors simultaneously.Strong 
ontrasts of red/green, blue/yellow, green/blue and red/blue
reate vibrations, illusions of shadows and afterimages.4. Use familiar, 
onsistent 
olor 
odings with appropriate referen
es.Some 
ommon Western denotations are:� Red refers to stop, danger, hot, �re.� Yellow refers to 
aution, slow, test.� Green refers to go, O.K., 
lear.5. Be 
onsistent in using the same 
olor for grouping related elements.Do not use a parti
ular 
olor for elements not related to the others,su
h as data stru
ture and 
ontrol buttons. Similar ba
kground 
olorsof related areas 
an orient the viewer to understand the 
on
eptuallinking of the two areas, without the need of more expli
it verbal 
ues.6. Use high value, high saturation 
olors to draw attention. The use ofbright 
olors for danger signals, reminders, et
., is appropriate. High
hroma red or blue alerts seem to eli
it faster responses than doesyellow or yellow-orange.7. Use 
olor to save s
reen area. For example, using a small area 
hangingin 
olor to denote a progress, rather than a bar or line, 
an greatlye
onomize spa
e.



www.manaraa.com

3.3 Using SoundSound is a useful 
omplement to the visual output be
ause it 
an in
rease (orredu
e) the amount of information 
ommuni
ated to the user. It makes useof the auditory system whi
h is powerful but underutilized in most 
urrentinterfa
es. So far, audio has been used to improve the programmer's aware-ness of the behavior of parallel programs by generating sounds based on tra
edata re
orded during exe
ution (Ja
kson & Fran
ioni, 1992). While animat-ing algorithms, Brown and Hershberger generated sounds 
orresponding inpit
h to elements being inserted into a hash table, items being sorted, andto the number of a
tive threads (Brown & Hershberger, 1992). The follow-ing are some re
ommendations for using sound in algorithm visualizationsystems.� Users have their own distin
t preferen
es for non-spee
h sounds whilethey are learning and using the system, so a highly-
exible user-
on�guration 
omponent should be in
luded for the users to spe
ify:{ the exa
t sound for ea
h event/
ommand,{ whether ea
h spe
i�
 sound is on/o�,{ whether all the sounds are on/o�.This 
on�guration should be easily a

essible.� The use of any non-spee
h sound is likely to require some trainingand pra
ti
e. A mixture of do
umentation and on-line training withexamples 
ould be used to give users the 
orre
t interpretation forthe sounds in a system. This will help to ensure that users have theintended model for the sounds.� Carefully 
onsider the number of sounds. Use only a few sounds for themost important or diÆ
ult events/
ommands. Don't 
reate a systemfull of non-spee
h sounds, whi
h might be
ome irritating. In addition,there is a threshold for learning and remembering sounds (from 7 to 9di�erent sounds).3.4 Sele
ting Input DataThe 
omplexity of a visual presentation is generally proportional to theamount of information being 
onveyed. Therefore, it is better to laun
ha presentation with a relatively small problem instan
e and provide largerones for the users who begin to understand the meaning asso
iated with



www.manaraa.com

the visual patterns unfolding on the s
reen. The RLE pa
kage (see Fig-ure 1) 
an visualize algorithms for input �les of size 4x4, 8x8, 16x16, and32x32. Input �les larger than that will be diÆ
ult to see on the s
reen,and thus, not bene�
ial to the students learning the algorithms. For peda-gogi
al purposes, pathologi
al 
ases should also be provided (e.g. all-whiteand all-bla
k bitmaps for run length en
oding algorithms). Graphi
al in-put tools are be
oming a must, espe
ially if visualization is intended forfree exploration by the students. When designing input tools, possible er-roneous situations should be 
onsidered. For the pa
kage in Figure 1, theerroneous input would be a text or an exe
utable �le for example. Largeamounts of data are needed to 
ompare the performan
e of di�erent algo-rithms. Another useful te
hnique for 
omparing algorithms is to have themrun side-by-side. BALSA animations of sorting algorithms e�e
tively usethis te
hnique (Brown, 1988).3.5 Providing Intera
tivityProbably the most important issue in designing algorithm visualizations isthat of user intera
tion. Intera
tion is what distinguishes algorithm vi-sualization systems from the simple movie demonstration of algorithms.The degree, methods, and forms of intera
tivity will depend on the tasksusers want to a

omplish. If the system will be used for exploratory pur-poses, like Brown's University Exploratories Proje
t (Simpson, Spalter, &Dam, 1999), users' intera
tion will be dynami
, frequent, and sometimesunpredi
table. Algorithm visualizations should en
ourage user's sear
h forstru
tures, trends, or testing a hypotheses through intera
tion. Studentsmight also want to 
he
k their understanding of the material through self-assessment exer
ises. The system 
an periodi
ally pose questions to thestudent. The simplest form is a ti
kler whi
h is a question that pops up inrandom order but always in the appropriate 
ontext. Ti
kler questions fo
usthe student's attention on spe
i�
 issues and promote self-explanation as ameans to improve 
omprehension. With ti
kler questions, neither the an-swers to the questions nor any sort of feedba
k is provided. Other questionsthat require student input 
an be pla
ed at arti
ulation points beyond whi
hthe learner 
annot pro
eed until the question is answered 
orre
tly. Anotherte
hnique is to spe
ify a desired result and to have the users �nd ways oftinkering with the parameters of an algorithm to a
hieve the required result.If on the other side, the algorithm animation system will be used to
on�rm or refute a hypothesis, or explain a 
on
ept, users' intera
tion withthe system might be more stable and predi
table and some of the parameters



www.manaraa.com


an be predetermined.Whi
h intera
tion me
hanism is 
hosen for 
ommuni
ation with the sys-tem depends on the users, their needs and tasks, but they should be as simpleas possible so as not to overwhelm the user. For example, it is importantto provide a graph editor/drawing utility if a novi
e will be spe
ifying inputdata for a graph algorithm.Intera
tive algorithm visualization systems should be forgiving to theuser. In a highly-intera
tive system, there is always a situation when theuser will press the wrong button, input invalid data, or manipulate the wronggraphi
 obje
t. The vast majority of user errors o

ur be
ause the developerof a system allows the error to o

ur. Most error messages therefore, 
an beeliminated by redu
ing the possibility of errors, by making sure that number�elds only a

ept numbers, by providing lists wherever possible, by providing�le sele
tion dialogs rather than asking users to type �lenames, and byproviding default values. Default values let the user know the expe
ted formof the input and 
onsequently will speed up the input pro
ess. Preventionof errors requires that the designers anti
ipate the potential mistakes theuser is likely to make. This is often the most diÆ
ult aspe
t of designing ane�e
tive user interfa
e, sin
e the designer's familiarity and knowledge of theprogram interferes with his or her ability to view the program as a novi
emight. Another way of dealing with erroneous input is to allow for easyreversal of a
tions. The Undo or Redo utilities relieve users' anxiety anden
ourage free exploration.The intera
tability of the system is dependent on its response time anddisplay rate. Time fa
tor is important, be
ause, on one hand, long responsetimes (15 se
onds and more) 
an result in user's frustration, annoyan
e oreven anger. On the other hand, if the response is too qui
k (less than 1se
ond) it 
an result in the users learning less, reading with lower 
ompre-hension, and making more errors.4 Con
luding RemarksThis paper presented an overview of the important design issues and te
h-niques for algorithm visualizations. The �eld of algorithm visualization israpidly evolving. There are many systems available over the Internet andmany are still under development. This paper is an attempt to bring to theattention of the visualization designers the importan
e of the preliminarystep: the analysis of the users, their needs, and tasks, and its impli
ations.We 
on
lude this work by giving some re
ommendations derived from our



www.manaraa.com

experien
e in designing and using algorithm visualizations.� Don't attempt to provide everything possible in the beginning. Pro-vide what you 
an that is of real bene�t to the user and is of highquality. Plan to in
rementally add new features over time rather thanimplement everything at on
e.� Keep in mind when designing new algorithm visualization that usersare not interested in pretty pi
tures. They need something that willlead them to 
onstru
t an empiri
al model of behavior. They shouldbe able to relate the display of information to a 
ontext and 
onne
tthe display to the environment from whi
h it is derived.� Make sure to prevent the animation from be
oming too busy and toodistra
ting, either spatially (too mu
h is going on in parallel) or tem-poral (too mu
h is 
hanging too qui
kly). First, perform informationanalysis and then design the layout.� Don't get 
arried away. Today's 
omputer software provide many gad-gets for designers to experiment with. It is so easy to pull down menusand sele
t di�erent typefa
es, and assign vivid 
olors. People tend touse too many 
olors or simply 
hoose the wrong 
olor that degrades thepresentation. A graphi
 overloaded design is 
onfusing to users. Goodgraphi
 design will 
onvey the intended message without distra
tionsof any kind.� To minimize students' startup learning time, provide standard GUIto manipulate the tools. Menus should appear in the same pla
e,intera
tions should be 
onsistent, and s
reen layouts should be similar.After several demonstrations of di�erent tools, the students will befamiliar with the interfa
e and s
reen layout, and 
an 
on
entrate onwhat is 
hanging in the visualization.� Provide tailor-made help �les, dire
ted to your users.Referen
esBae
ker, R. (1998). Sorting out sorting: A 
ase study of software visualiza-tion for tea
hing 
omputer s
ien
e. Software Visualization: Program-ming as a Multimedia Experien
e, 369{382.



www.manaraa.com

Biermann, H., & Cole, R. (1999). Comi
 strips for algorithm visualization[NYU Te
hni
al Report 1999-778℄.Brown, M. (1988). Algorithm animation. Cambridge, MA: MIT Press.Brown, M., & Hershberger, J. (1992). Color and sound in algorithm anima-tion. Computer, 25 (12), 52{63.Brown, M., Najork, M., & Raisamo, R. (1997). A java-based implementationof 
ollaborative a
tive textbooks. 1997 IEEE Symposium on VisualLanguages, 372{379.Cox, K., & Roman, G. (1992). Abstra
tion in algorithm animation (WUCS-92-14 Report). S
hool of Engineering and Applied S
ien
e, WashingtonUniversity in St. Louis.Hundhausen, C. (1999). Toward e�e
tive algorithm visualization artifa
ts:Designing for 
ourse. Do
toral dissertation, University of Oregon.Ja
kson, J., & Fran
ioni, J. (1992). Aural signatures of parallel programs.Pro
eedings of the 25th Hawaii Conferen
e on System S
ien
es, 218{229.Khuri, S., & Hsu, H. (1999). Visualizing the 
pu s
heduler and page re-pla
ement algorithms. Pro
eedings of the SIGCSE'99, 227{231.Khuri, S., & Hsu, H. (2000). Intera
tive pa
kages for learning image 
om-pression algorithms. Pro
eedings of the 5th ITiCSE, 73{76.Naps, T. (1990). Algorithm visualization in 
omputer s
ien
e laboratories.Pro
eedings of the SIGCSE'90, 105{110.Simpson, R., Spalter, A., & Dam, A. (1999). Exploratories: An edu
a-tional strategy for the 21st 
entury. Pro
eedings of the 
onferen
e onSIGGRAPH 99: 
onferen
e abstra
ts and appli
ations, 43{45.Stasko, J. (1997). Using student-built algorithm animations as learningaids. Pro
eedings of the SIGCSE'97, 25{29.Teller, S., Boyd, N., Porter, B., & Tornow, N. (1998). Distributed de-velopment and tea
hing of algorithmi
 
on
epts. Pro
eedings of SIG-GRAPH'98, 94{101.


