Designing Effective Algorithm Visualizations

Sami Khuri*
Department of Mathematics and Computer Science
San José State University
San José, CA 95192, USA
E-mail: khuri@cs.sjsu.edu
WWW: http://www.mathcs.sjsu.edu/faculty /khuri

Abstract

Advances in computing technology and the affordability of soft-
ware and high-performance graphics hardware enabled rapid growth
of visual tools. Today, not only very expensive workstations, but also
low-cost PCs are capable of running computationally demanding vi-
sualization systems. Algorithm visualizations or the graphic depiction
of algorithms in execution have been used in explaining, designing
and analyzing algorithms since the early 1980s. Although many tools
have been developed over the past twenty years, not enough attention
has been paid to the analysis of users, their needs, tasks, and goals.
This paper provides an overview of algorithm visualization techniques,
based on the premise that a rethinking of algorithm animation design
is required in order to harness its power for enhancing learning. More
information about the topic can be found on the author’s web page.

1 Introduction

This paper provides an overview of algorithm visualization techniques, based
on the premise that a rethinking of algorithm animation design is required in
order to harness its power to enhance learning. Since the early 1980s, many
visualization systems have been created. They range from animations of one
algorithm or a group of related algorithms, such as MLFQ, PAGE (Khuri
& Hsu, 1999), RLE, Quadtree, and JPEG (Khuri & Hsu, 2000), to powerful
distributed and collaborative algorithm animation systems, such as Fuse-N

“Part of this work was done while the author was on sabbatical leave at the University
of Malaga, 29071 Malaga, Spain.

www.manaraa.com

by MIT Computer Graphics Group (Teller, Boyd, Porter, & Tornow, 1998)
and JCAT (Brown, Najork, & Raisamo, 1997). Algorithm visualizations
can be used to attract students’ attention during lecture, explain concepts
in visual terms, automate examples and demos and encourage a practical
learning process. They facilitate better communication among the students
and the instructors. The instructional process in traditional classes is often
one-directional. Instructors use the whiteboard or slides to present the ma-
terial. The interaction between them and the students is limited to verbal
discussions. Very rarely do students have the opportunity to experiment
in class and explore a concept in other dimensions. Interactive algorithm
visualizations provide new opportunities for instruction. The instruction
approach can now be viewed as a combined learning process. Students do
not just sit in the classroom and listen. They use their left and right brain to
visualize things happening while they are processing their mental thoughts.
They can learn by doing and do not have to worry about making mistakes.

This paper focuses on important steps of the algorithm visualization
design and techniques of effective educational illustrations of algorithms.

The rest of the paper is organized as follows. Section 2 discusses some im-
portant issues often overlooked by the developers of algorithm visualization.
Section 3 presents an overview of techniques that can make visualizations
more effective. Section 4 concludes the paper with some recommendations
for designers of new visualizations.

2 Design Issues

Like many other design disciplines, a successful algorithm visualization de-
sign should consider effective representation and presentation of information,
such as layout, color, graphics, and user interface. Designers of interactive
algorithm visualizations must be able to blend a thorough knowledge of
technical feasibility with a mystical aesthetic sense of what attracts users.

Some issues that sometimes have been overlooked by the designers of
algorithm visualizations include the analysis of the users, their needs, their
tasks, the scope of the package, and the resources available to developers.
The analysis should be done as a preliminary step of the design process.
What follows are examples of how it can influence the resulting algorithm
visualization.

e Although some systems are intended for a wide audience, no algorithm
visualization will ever be universally superior across all kinds of users.

www.manaraa.com

Understanding who the users are should determine the content, or-
ganization, breadth, depth, access and presentation methods of the
visualization system being designed.

For example, novice users need help in mapping real world models
onto a program. For this type of users, visualization should include a
number of worked examples showing how the algorithm can be used
and how the algorithm output is related to its input, Help files should
be available to describe how the algorithm works, as well as how the
interface is organized. Short quizzes should be provided for students
to make sure they have understood the material, and to exercise the
use of the visualization tools.

On the other hand, experienced users will want a system that will
allow them to move easily between the code and the visualization, or
to integrate their own programs into the system. The methods for
calling visualization routines should be efficient and well documented.

When designing an algorithm visualization system, it is important to
note the system’s intended goals and select the content accordingly.
An assessment should be made to see if presenting an algorithm by
visualizing it is the most effective way. For example, using a telephone
book to explain the binary search algorithm is probably more efficient
than implementing an algorithm visualization.

Algorithm visualization systems have been used to construct visual-
izations for lecture demonstrations (Brown, 1988), as the basis for
interactive labs (Naps, 1990), or as visualization assignments in which
students construct their own visualizations of the algorithms under
study (Stasko, 1997). In more recent work, Hundhausen proposes to
use software visualization in one of the following situations: lectures,
assignments, laboratories, study, office hours, and tests (Hundhausen,
1999). Obviously, each situation demands a different kind of anima-
tion system, and it is difficult to build the system that satisfies all of
them.

For example, if the tools are developed primarily for classroom demon-
stration with an instructor describing the scenario, they do not need
a lot of written explanations. As a visualization proceeds, the expla-
nation of what is happening should be left for the instructor and not
explicitly described in the demonstration. If, however, the tools will
be used for self-directed study, they will need a lot of explanatory cues
in the form of short textual notes.

www.manaraa.com

24 Run Length Encoding - Hilbert Cuive] D _(of x|
File Algorithms Input Files Options Help

4+ | Compression Output

0, 40, 4, 60, 61,

&l

4J

alrn e

| Total Compressed: 5
Compression Ratio:

0.01 (5/256)
= Counts for Same Color Pixel: 61

gaﬂun Length Encoding - Sierpinski Curve

File Algorithms Input Files Options Help

~| Compression Output

0,3,7,41.1,22,
51,14,

ED

4]

= Total Compressed: 11
Compression Ratio:

017 (11/64)

|| Counts for Same Color Pixel: 14

| Step || Run || Stop || Reset ‘

Figure 1: Compressing bitmaps using the RLE package.

e One of the most difficult parts of the analysis step is to decide which
information should the visualization convey and how to present it.
Existing systems have attempted to visualize data structures, program
flows, pseudocode and the algorithm in action.

Designers should develop an appropriate set of conventions to denote
different information, so that the users do not waste their time try-
ing to figure out what the picture means. The information should be
carefully abstracted. Different levels of abstraction require different
representation methods (Cox & Roman, 1992). Direct representations
directly map information to the display, e.g. the bitmap in Figure
1 can be easily reconstructed from the picture in the left panel. In
structural representations, some details of information are concealed
and the remaining information is directly represented. For example,
proportionally-sized color blocks may indicate memory allocation and
usage without attempting to present the state of memory. Synthe-
sized representations, such as “Compression Output” in Figure 1, can
be derived from the program data, but is not directly represented in

www.manaraa.com

the program. The extra data structures are created and their contents
are periodically examined and updated in the display. This type, as
well as explanatory representations are added in order to improve un-
derstandability of the display and focus the attention of the viewers.

Information about the algorithm can be represented through shape,
size, color, texture, sound, and arrangement of objects. Different, but
related algorithms can be animated using the same representation or
different representations for each algorithm. Using the same represen-
tation is productive since once the animation view has been established
for the first algorithm, the view can then be reused. This approach
also eases the comparison of the behavior of related algorithms as in
“Sorting Out Sorting” (Baecker, 1998).

e The designer also has to set the boundaries for the visualization. Most
modern algorithm visualizations allow the user to enter their own data
sets. If the input file contains a lot of data, the visualization will be-
come very complex and difficult to see. The users will have to scroll
and may lose the sense of the “whole” picture. The animation might
confuse more than educate. In such cases, visualization should con-
dense complicated parts of the scene into smaller items. Algorithm’s
execution can also be condensed, e.g. several phases of an algorithm
can be omitted and only the final result of those steps is presented.

3 Some Techniques for Creating Visualizations

In this section, we examine techniques for visual representation of informa-
tion about programs. We focus on approaches that are either fundamental
or have been tried and appear to enhance visual communication. Although
research on algorithm visualization dates back to 1980s, no definitive lexicon
of these techniques exists. In addition, new techniques continually evolve.
We thus try to give a reasonably complete coverage of the area, bearing in
mind, that it cannot be comprehensive.

3.1 Display Layout

The screen on which the visualization occurs can easily get cluttered with
the many visual representations of control constructs or data items. If these
are reduced in size to allow yet more representations to be displayed then
the animations are too small to be seen clearly. One way to reduce visual
cluttering is to divide each animation display into functional areas, each

www.manaraa.com

containing a different type of information. It is advisable to place impor-
tant information near the top and to the left (eye-motion studies show that
our gaze goes to the upper-left of a rectangular display and then moves
clockwise). Each type of information should be consistently displayed in its
assigned area. If necessary, areas can be enlarged or minimized to handle
special cases, always keeping the primary viewing area as large as possible.

It is often useful to provide multiple views of the same system in order to
understand a variety of characteristics of the data. Multiple views might in-
clude simultaneous coarse-grained and fine-grained views of data structures,
or a graphical view of the changing program data with a corresponding view
of the executing source code (Brown, 1988). One of the advantages of multi-
ple views is their ability to avoid forcing the viewer to remember algorithm
states no longer on display. For example, two consecutive frames are shown
in the “comic strip” approach (Biermann & Cole, 1999). These frames dis-
play the state of the system both immediately before and after an action. A
useful extension of the multiple views idea is the use of segmentation, where
a selection of some subset of the nodes in one view is reflected in all views.
In this case, one could select a physical region in one of the views, and the
display would immediately highlight the corresponding values in the other
views (Khuri & Hsu, 2000).

Some researchers criticize the multiple views approach. They argue that
multiple views lead to confusion about what is being explained. They believe
that a single window should be used to display the animation with the ex-
planatory text, thus preventing problems arising from too much information
being displayed on the limited resolution device.

3.2 Using Color

Color has traditionally been used to enhance black-and-white information.
With respect to learning and comprehension, color is superior to black-
and-white in terms of processing time and the viewer’s emotional reactions.
But research has shown that there is no difference in the viewer’s ability to
interpret information: people do not learn more from a color display, though
they may say they do. The crucial factor is that color is more enjoyable and
easier to remember.

Establishing general rules or specifications for color use is difficult. We
still lack some important understanding of color vision. Some general guide-
lines have appeared in computer graphics magazines. What follows is a short
summary of these guidelines.

1. With respect to color, it is best to be conservative. Use a maximum

www.manaraa.com

of five, plus or minus two, colors. For novice viewers, four distinct
colors are appropriate. This allows extra room in short-term memory
(lasting about 20 seconds), which can store five words or shapes, six
letters, seven colors and eight digits.

. Use foveal (center) and peripheral colors appropriately. For example,
use blue for large areas, such as backgrounds and not for text, thin
lines or small shapes. Blue-sensitive cones are the least numerous color
receptors in the retina, and the eye’s central focusing area, the fovea,
contains a relatively small number of these cones.

Use red and green in the center of the visual field, not in the periphery.
The edges of the retina are not particularly sensitive to these colors. If
they are used at the periphery, some signal to the viewer must be given
to capture the user’s attention - for example, size change, blinking, etc.

. Do not use high-chroma, spectrally extreme colors simultaneously.
Strong contrasts of red/green, blue/yellow, green/blue and red/blue
create vibrations, illusions of shadows and afterimages.

. Use familiar, consistent color codings with appropriate references.
Some common Western denotations are:

e Red refers to stop, danger, hot, fire.
e Yellow refers to caution, slow, test.

e Green refers to go, O.K., clear.

. Be consistent in using the same color for grouping related elements.
Do not use a particular color for elements not related to the others,
such as data structure and control buttons. Similar background colors
of related areas can orient the viewer to understand the conceptual
linking of the two areas, without the need of more explicit verbal cues.

. Use high value, high saturation colors to draw attention. The use of
bright colors for danger signals, reminders, etc., is appropriate. High
chroma red or blue alerts seem to elicit faster responses than does
yellow or yellow-orange.

. Use color to save screen area. For example, using a small area changing
in color to denote a progress, rather than a bar or line, can greatly
economize space.

www.manaraa.com

3.3 Using Sound

Sound is a useful complement to the visual output because it can increase (or
reduce) the amount of information communicated to the user. It makes use
of the auditory system which is powerful but underutilized in most current
interfaces. So far, audio has been used to improve the programmer’s aware-
ness of the behavior of parallel programs by generating sounds based on trace
data recorded during execution (Jackson & Francioni, 1992). While animat-
ing algorithms, Brown and Hershberger generated sounds corresponding in
pitch to elements being inserted into a hash table, items being sorted, and
to the number of active threads (Brown & Hershberger, 1992). The follow-
ing are some recommendations for using sound in algorithm visualization
systems.

e Users have their own distinct preferences for non-speech sounds while
they are learning and using the system, so a highly-flexible user-
configuration component should be included for the users to specify:

— the exact sound for each event/command,
— whether each specific sound is on/off,

— whether all the sounds are on/off.
This configuration should be easily accessible.

e The use of any non-speech sound is likely to require some training
and practice. A mixture of documentation and on-line training with
examples could be used to give users the correct interpretation for
the sounds in a system. This will help to ensure that users have the
intended model for the sounds.

e Carefully consider the number of sounds. Use only a few sounds for the
most important or difficult events/commands. Don’t create a system
full of non-speech sounds, which might become irritating. In addition,
there is a threshold for learning and remembering sounds (from 7 to 9
different sounds).

3.4 Selecting Input Data

The complexity of a visual presentation is generally proportional to the
amount of information being conveyed. Therefore, it is better to launch
a presentation with a relatively small problem instance and provide larger
ones for the users who begin to understand the meaning associated with

www.manaraa.com

the visual patterns unfolding on the screen. The RLE package (see Fig-
ure 1) can visualize algorithms for input files of size 4x4, 8x8, 16x16, and
32x32. Input files larger than that will be difficult to see on the screen,
and thus, not beneficial to the students learning the algorithms. For peda-
gogical purposes, pathological cases should also be provided (e.g. all-white
and all-black bitmaps for run length encoding algorithms). Graphical in-
put tools are becoming a must, especially if visualization is intended for
free exploration by the students. When designing input tools, possible er-
roneous situations should be considered. For the package in Figure 1, the
erroneous input would be a text or an executable file for example. Large
amounts of data are needed to compare the performance of different algo-
rithms. Another useful technique for comparing algorithms is to have them
run side-by-side. BALSA animations of sorting algorithms effectively use
this technique (Brown, 1988).

3.5 Providing Interactivity

Probably the most important issue in designing algorithm visualizations is
that of user interaction. Interaction is what distinguishes algorithm vi-
sualization systems from the simple movie demonstration of algorithms.
The degree, methods, and forms of interactivity will depend on the tasks
users want to accomplish. If the system will be used for exploratory pur-
poses, like Brown’s University Exploratories Project (Simpson, Spalter, &
Dam, 1999), users’ interaction will be dynamic, frequent, and sometimes
unpredictable. Algorithm visualizations should encourage user’s search for
structures, trends, or testing a hypotheses through interaction. Students
might also want to check their understanding of the material through self-
assessment exercises. The system can periodically pose questions to the
student. The simplest form is a tickler which is a question that pops up in
random order but always in the appropriate context. Tickler questions focus
the student’s attention on specific issues and promote self-explanation as a
means to improve comprehension. With tickler questions, neither the an-
swers to the questions nor any sort of feedback is provided. Other questions
that require student input can be placed at articulation points beyond which
the learner cannot proceed until the question is answered correctly. Another
technique is to specify a desired result and to have the users find ways of
tinkering with the parameters of an algorithm to achieve the required result.

If on the other side, the algorithm animation system will be used to
confirm or refute a hypothesis, or explain a concept, users’ interaction with
the system might be more stable and predictable and some of the parameters

www.manaraa.com

can be predetermined.

Which interaction mechanism is chosen for communication with the sys-
tem depends on the users, their needs and tasks, but they should be as simple
as possible so as not to overwhelm the user. For example, it is important
to provide a graph editor/drawing utility if a novice will be specifying input
data for a graph algorithm.

Interactive algorithm visualization systems should be forgiving to the
user. In a highly-interactive system, there is always a situation when the
user will press the wrong button, input invalid data, or manipulate the wrong
graphic object. The vast majority of user errors occur because the developer
of a system allows the error to occur. Most error messages therefore, can be
eliminated by reducing the possibility of errors, by making sure that number
fields only accept numbers, by providing lists wherever possible, by providing
file selection dialogs rather than asking users to type filenames, and by
providing default values. Default values let the user know the expected form
of the input and consequently will speed up the input process. Prevention
of errors requires that the designers anticipate the potential mistakes the
user is likely to make. This is often the most difficult aspect of designing an
effective user interface, since the designer’s familiarity and knowledge of the
program interferes with his or her ability to view the program as a novice
might. Another way of dealing with erroneous input is to allow for easy
reversal of actions. The Undo or Redo utilities relieve users’ anxiety and
encourage free exploration.

The interactability of the system is dependent on its response time and
display rate. Time factor is important, because, on one hand, long response
times (15 seconds and more) can result in user’s frustration, annoyance or
even anger. On the other hand, if the response is too quick (less than 1
second) it can result in the users learning less, reading with lower compre-
hension, and making more errors.

4 Concluding Remarks

This paper presented an overview of the important design issues and tech-
niques for algorithm visualizations. The field of algorithm visualization is
rapidly evolving. There are many systems available over the Internet and
many are still under development. This paper is an attempt to bring to the
attention of the visualization designers the importance of the preliminary
step: the analysis of the users, their needs, and tasks, and its implications.
We conclude this work by giving some recommendations derived from our

www.manaraa.com

experience in designing and using algorithm visualizations.

e Don’t attempt to provide everything possible in the beginning. Pro-
vide what you can that is of real benefit to the user and is of high
quality. Plan to incrementally add new features over time rather than
implement everything at once.

e Keep in mind when designing new algorithm visualization that users
are not interested in pretty pictures. They need something that will
lead them to construct an empirical model of behavior. They should
be able to relate the display of information to a context and connect
the display to the environment from which it is derived.

e Make sure to prevent the animation from becoming too busy and too
distracting, either spatially (too much is going on in parallel) or tem-
poral (too much is changing too quickly). First, perform information
analysis and then design the layout.

e Don’t get carried away. Today’s computer software provide many gad-
gets for designers to experiment with. It is so easy to pull down menus
and select different typefaces, and assign vivid colors. People tend to
use too many colors or simply choose the wrong color that degrades the
presentation. A graphic overloaded design is confusing to users. Good
graphic design will convey the intended message without distractions
of any kind.

e To minimize students’ startup learning time, provide standard GUI
to manipulate the tools. Menus should appear in the same place,
interactions should be consistent, and screen layouts should be similar.
After several demonstrations of different tools, the students will be
familiar with the interface and screen layout, and can concentrate on
what is changing in the visualization.

e Provide tailor-made help files, directed to your users.

References

Baecker, R. (1998). Sorting out sorting: A case study of software visualiza-
tion for teaching computer science. Software Visualization: Program-
ming as a Multimedia Ezperience, 369 382.

www.manaraa.com

Biermann, H., & Cole, R. (1999). Comic strips for algorithm visualization
INYU Technical Report 1999-778].

Brown, M. (1988). Algorithm animation. Cambridge, MA: MIT Press.

Brown, M., & Hershberger, J. (1992). Color and sound in algorithm anima-
tion. Computer, 25(12), 52 63.

Brown, M., Najork, M., & Raisamo, R. (1997). A java-based implementation
of collaborative active textbooks. 1997 IEEE Symposium on Visual
Languages, 372-379.

Cox, K., & Roman, G. (1992). Abstraction in algorithm animation (WUCS-
92-14 Report). School of Engineering and Applied Science, Washington
University in St. Louis.

Hundhausen, C. (1999). Toward effective algorithm visualization artifacts:
Designing for course. Doctoral dissertation, University of Oregon.

Jackson, J., & Francioni, J. (1992). Aural signatures of parallel programs.
Proceedings of the 25th Hawaii Conference on System Sciences, 218
229.

Khuri, S., & Hsu, H. (1999). Visualizing the cpu scheduler and page re-
placement algorithms. Proceedings of the SIGCSE’99, 227-231.

Khuri, S., & Hsu, H. (2000). Interactive packages for learning image com-
pression algorithms. Proceedings of the 5th ITiCSE, 73 76.

Naps, T. (1990). Algorithm visualization in computer science laboratories.
Proceedings of the SIGCSE’90, 105 110.

Simpson, R., Spalter, A., & Dam, A. (1999). Exploratories: An educa-
tional strategy for the 21st century. Proceedings of the conference on
SIGGRAPH 99: conference abstracts and applications, 43 45.

Stasko, J. (1997). Using student-built algorithm animations as learning
aids. Proceedings of the SIGCSE’97, 25 29.

Teller, S., Boyd, N., Porter, B., & Tornow, N. (1998). Distributed de-
velopment and teaching of algorithmic concepts. Proceedings of SIG-
GRAPH’98, 94 101.

www.manaraa.com

